Simulation of the mechanical interlocking capacity of a rough bone implant surface during healing

نویسندگان

  • Anders Halldin
  • Mats Ander
  • Magnus Jacobsson
  • Stig Hansson
چکیده

BACKGROUND When an implant is inserted in the bone the healing process starts to osseointegrate the implant by creating new bone that interlocks with the implant. Biomechanical interlocking capacity is commonly evaluated in in vivo experiments. It would be beneficial to find a numerical method to evaluate the interlocking capacity of different surface structures with bone. In the present study, the theoretical interlocking capacity of three different surfaces after different healing times was evaluated by the means of explicit finite element analysis. METHODS The surface topographies of the three surfaces were measured with interferometry and were used to construct a 3D bone-implant model. The implant was subjected to a displacement until failure of the bone-to-implant interface and the maximum force represents the interlocking capacity. RESULTS The simulated ratios (test/control) seem to agree with the in vivo ratios of Halldin et al. for longer healing times. However the absolute removal torque values are underestimated and do not reach the biomechanical performance found in the study by Halldin et al. which might be a result of unknown mechanical properties of the interface. CONCLUSION Finite element analysis is a promising method that might be used prior to an in vivo study to compare the load bearing capacity of the bone-to-implant interface of two surface topographies at longer healing times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implant stability and bone remodeling up to 84 days of implantation with an initial static strain. An in vivo and theoretical investigation

OBJECTIVES When implants are inserted, the initial implant stability is dependent on the mechanical stability. To increase the initial stability, it was hypothesized that bone condensation implants will enhance the mechanical stability initially and that the moderately rough surface will further contribute to the secondary stability by enhanced osseointegration. It was further hypothesized that...

متن کامل

The use of a coin shaped implant for direct in situ measurement of attachment strength for osseointegrating biomaterial surfaces.

Most animal models currently used to study the retention of implants in bone are influenced by shear forces introduced during the retention test. This is mainly due to the implant design, which most often are cylindrical, conical or threaded. In these models interlocking between bone and implant surface will increase the effect of genuine bone bonding and thus give a false positive outcome. The...

متن کامل

Radiographic Comparison of Crestal Bone Loss Around Two Implant Systems with Different Surface Roughness: A Retrospective Study

Background and Aim: This retrospective study aimed to investigate the effects of surface roughness and implant body design on the amount of crestal bone loss around implant. Materials and Methods: In this retrospective study, dental records of 87 patients who received 139 implants were evaluated. The ITI group received 63 implants with moderate roughness, while the DIO group received 76 implan...

متن کامل

Removal torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia.

This study presents a histomorphometric and biomechanical comparison of bone response to commercially pure titanium screws with 4 different types of surface topographies placed in the tibial metaphysis of 12 rabbits. Each rabbit had 4 implants placed, 2 in each tibia. The 4 surface topographies were a machined surface, a grit-blasted surface, a plasma-sprayed surface, and an acid-etched (Osseot...

متن کامل

Mechanical Surface Treatments of Ti-6Al-4V Miniplate Implant Manufactured by Electrical Discharge Machining (TECHNICAL NOTE)

Present work aims at multi-mechanical surface treatment of Ti-6Al-4V based-miniplate implant manufactured by electrical discharge machining (EDM) for biomedical use. Mechanical surface treatment consists of consequent use of ultrasonic cleaning, rotary tumbler polishing, and brushing. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2015